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THEORY OF ANISOTROPIC FERROMAGNETIC COLLOIDS 

V. M. Suyazov UDC 538.4:532.584 

Introduction. In present theoretical descriptions of the flow of a ferrofluid (a sta- 
bilized surface-active colloid consisting of ferromagnetic particles in a fluid carrier) 
various approaches and approximations have been used [1-12]. One of the first hydrodynamic 
models of a ferrofluid [i] assumed that the magnetization relaxation time T was small in 
comparison to the characteristic macroscopic times of the problem; in this case one can put 
T = 0, and consider the magnetization of the medium as given by an equilibrium equation of 
state. 

Unlike this approach, in [2-4], models were developed where the relaxation time ~ is 
finite, so that the change in magnetization is given by a relaxation equation, which together 
with the other equations of the theory describe the magnetization dynamics of magnetically 
isotropic ferrofluids. From the microscopic point of view, magnetic isotropy of the ferro- 
fluid implies that the magnetization is frozen in the particles or the generalized magnetic 
anisotropy constant K of the particles is infinite. This means that the orientational change 
of the magnetization in these models is determined entirely by the rotation of the particles 
(Brownian relaxation [5] with relaxation time T2). 

In the case where the thermal energy kT is comparable to the (finite) magnetic aniso- 
tropy energy of a particle kV, where V is the volume of a particle and k is the Boltzmann 
constant, the latter energy is not large enough to keep the magnetic moment frozen inside 
the particle against the thermal fluctuations. The orientational change of the magnetization 
in the general case where the magnetic moments are partially frozen will be determined both 
by diffusion of the moment with respect to the particle (N~el relaxation with relaxation time 
r~ [5]), and by the Brownian rotation of the particles, which for hydrodynamical flow and 
for T~ << ~= will determine the macroscopic magnetic anisotropy of the ferrofluid. 

The first treatment of the effect of partial freezing of the magnetic moments on the 
effective viscosity of the ferrosuspension was considered in [i0]. However, this treatment, 
based on kinetic ideas, did not yield a definite formula for the effective viscosity, which 
would contain the previously known formula for the rigid magnetic dipole model, or a general 
macroscopic equation of motion. 

A series of papers [8, ii, 12] are of interest, in which a general macroscopic equation 
was formulated taking into account the finiteness of the magnetic anisotropy energy of the 
particles by introducing into the theory a macroscopic vector parameter A defined as the 
internal magnetic anisotropy field. In the equilibrium state this parameter is taken to be 
proportional to the magnetization A = am, where the coefficient ~ is defined as a parameter 
giving the degree of freezing of the magnetic moments with respect to the particles. 

Calculations of the dependence of the viscosity on the field strength ~ in a state of 
partial equilibrium using these equations [8] yields remarkable agreement between theory and 
experiment for a suspension of magnetite in kerosene. However, this agreement should not be 
taken as unequivical support for the above interpretation of the parameter a (or for the 
assumption that the deviation of the experimental viscosity dependence from the rigid dipole 
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model is due only to partial freezing of the magnetic moments) since the agreement between 
theory and the experiment in [8] occurs because the experimental dependence of the parameter 

on ~ is substituted into the theory. Also one cannot exclude the effects of impurities in 
the experimental data, the influence of such factors as the presence of clusters, chainlike 
aggregates, polydispersion of the particles, and other factors not taken into account in the 
theory [8]. It is well known that these effects are important in real ferrofluids at high concentra- 
tions and significantly affect the hydrodynamics and other processes. For example, the fea- 
tures of the Debye relaxation spectra for ferrofluids such as a suspension of magnetite in 
kerosene were explained in [9] assuming the existence of two kinds of particles with differ- 
ent relaxation times ~ and T2 such that TI << T2, i.e., the assumption of an isotropic, ri- 
gid dipole component in the ferrofluid. It is thus of interest to study the effect of parti- 
cle-size dispersion on the effective viscosity of the ferrofluid. 

In addition, the theory [8] uses a vector anisotropy field A to characterize the partial 
freezing of the magnetic moments. Although such a device is widely used in physics (such as 
polymers, where internal scalar, vector, and tensor variables are used to characterize relax- 
at~on processes), in a state of partial equilibrium, the relaxation equation used in [8] re- 
duces to a single relaxation equation for the magnetization, which can be written as the sum 
of two parts: the instantaneous value m s and the relaxation part mp. This suggests that 
instead of introducing a vector anisotropy parameter in the theory, from the beginning we 
wrlte the magnetization as a sum of two parts, each of which is described by its own relaxa- 
tion equation. 

The present paper discusses these aspects of the theory of an anisotropic ferrofluid. 
The theory is developed using the ideas of interpenetrating magnetizable continua worked out 
in [3]. We consider a physical model of the magnetization of the ferrofluid in which there 
are two relaxation mechanisms. The magnetization is written as a sum of two parts, m~ and 
m=, with characteristic relaxation times given by ~ and r2. In a real ferrosuspension this 
situation can occur in two cases: i) the ferrofluid consists of two types of particles with 
significantly different magnetic properties (the two-particle model discussed in Secs. i and 
2); 2) the ferrofluid consists of only a single kind of particle, but the magnetic moments 
are partially frozen (the single-particle model discussed in Secs. 3 and 4). In the first 
case, the relaxation times TI and T2 will be determined by the usual Brownian relaxation 

p 

times. In the second case rl and T2 are determined by Brownian and Neel relaxation times. 

The anisotropy in both cases arises due to the effect of the two relaxation mechanisms 
of the magnetization when ~ << T2. If we apply an external field over a period of time of 
order T~, the component of the ferrofluid magnetization in the direction of the field will be 
given by ml and will increase to the value m~ over a time of order ~2. Under certain dynami- 
cal conditions, it is possible to separate the effects of the magnetizations m~ and m2 on 
processes which also can arise from flow anisotropy. We illustrate the theory by an analysis 
of the effective viscosity of a ferrosuspension. 

i. Basic Equations for the Two-Particle Model of an Anisotropic Ferrocolloid. The set 
of equations for a ferrosuspension mixture consisting of interpenetrating components capable 
of separating was formulated in [3]. We write out the equations in modified form for the 
following physical model. The ferrofluid will be considered as a suspension of ferromagnetic 
particles of two kinds, with different magnetic properties, in a fluid solvent.* The differ- 
ent properties of the particles may be due to differing particle sizes, or due to the forma- 
tion of coagulated colloidal particles [7] which lead to different values of the particle 
magnetic moments. Other interpretations are also possible. We assume that the magnetic 
moments of one group of particles are completely frozen; in the other group the moments are 
assumed to be partially frozen. # The magnetization relaxation times for the two groups of 
particles will be different in all cases; thus, it is necessary to consider two relaxation 
equations for the magnetization. In addition, the force created by the rotating magnetic 
moments will be smaller for particles of smaller size (or for particles with partially fro- 
zen magnetic moments) than for the other group of particles. This is due to the differing 

~*This is an approximation because in most real ferrosuspensions there is dispersion in parti- 
cle sizes which obeys a distribution law. 
there we do not describe in detail the processes of partial freezing of magnetic moments; it 
is mentioned only to illustrate the differences in magnetic properties of the two groups of 
particles. Larmour precession of the magnetic moments is everywhere ignored. 
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rotational velocities of the particles, w ~ v - W a .  We will assume that particles of both 
groups are frozen translationally in the fluid solvent so that their translational velocities 
will be equal to the velocity of the fluid. Hence we have v~ = va = v. 

Under the above assumptions, and in the absence of free charges, and vanishing conduc- 
tivity and polarization of the medium, the set of equations developed in [3] can be written 

as follows: 

The electrodynamic equations: 

@o h dPom #eoe 
v x e @  ~--7--= Ot V ~ < ( ~ m •  v •  ot - - 0 ,  ( 1 . 1 )  

V . ~ o ( h  + m )  = O, v ' % e  = O, m = m~ ~ m~:. 

The equations ~ continuity, the conservation laws for momentum and angular momentum, 
and the entropy production inequality ~: 

where 

9' 4- 9V '  v = O, pv" = V" t -~ (pore. V) h - -  v ~: (~tom. V) e - -  ppdt" x %e, 

pTy = - -  T - ~ Q . v  F -i- ((% - -  o~)~L @ ~ r  ~ + 

2 [  ~ , 20~) ' " o~x,uom~) o,~Ro:] 0, ! -  s a"VO)~  @ T ( t ~ ? <  ' I ) ' ( V  Y v - -  + ( P ~ , ~ 0 ~ - -  "o~]o: >~ 
L 

c,~ = '!, '2, 

( i . 2 )  

1 ] - -  - - - ~ ,  ~ " EI]rZ . . . .  ~ - - -  E ~ ] ~ - ] -  D]]C~; R ( l  = E l ] c c X ~ t o n l a ;  
dp-1 ' ~toPu 0~'- ' (1 .  3 ) 

t = - - a I  -6 Dt; m~ = p ~ ;  p := 91 + po; p~ ~ p~,a 1 + p~t2; I = {6~;}; 

2P  = {t ~ - -  t~}; U(c,.) =: ( - - i ) a - L  

Here e and h are the electric and magnetic field vectors, so, ~R are the electric and 
magnetic constants, t~, s~ are the force and torque stress tensors, L is the diffusive inter- 
action torque, ~is the free energy, Q is the heat flux vector, V is the Hamiltonian opera- 
tor; I~ are scalar constants with units of moment of inertia per unit mass, The operations �9 
and x stand for the scalar and vector products, respectively. For the density p~ we take 
the ratio of the mass of particles of type a and the surrounding part of the fluid to the 
volume of the entire mixture. Relations between p~, la, and the number of particles n~ and 
the microscopic characteristics are not specified. The dot superscript denotes a total time 
derivative. 

The set of equations (i.I) and (1.2) must be supplemented by constitutive equations for 
the 19 irreducible thermodynamic fluxes; these equations relate the fluxes to the thermody- 
namic forces via tensor kinetic coefficients which will be functions of the magnetization 
vectors. Here we do not write out the explicit general form of these equations, but give 
a particular form of the constitutive equations used below for the case of an incompressible 
isothermal momentless ferrofluid 

+ + + + @, L = h = 

= ~ ) ( V X V - -  2m~), ( 1 . 4 )  

- -  = - - m l ) . T ( m 2 0 h - - m ~ ) ,  m ~ o = K l h ,  h = h / h ,  

- -  o ~ x m ,  = ~ ( m ~ o h - - m ~ )  
i K 1 

~r - - - -~2 (re, lob - -  ml) ,  m~o ~ K~h. . t T 

H e r e  K: and  Ka a r e  t h e  e q u i l i b r i u m  s u s c e p t i b i l i t i e s  o f  t h e  f e r r o s u s p e n s i o n  f r o m  p a r t i -  
c l e s  of the first and second kinds, and p is the hydrostatic pressure. The relaxation times 
r~, T=, r are related to these constants [3] as follows: r~ = ~oKI/~i (!) , T2 = ~oK=/~1 (2) 
T = ~oK=/~= (x) , and they satisfy the thermodynamic restrictions 
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KI, K~, TI, Z~ ~ 0, ~2K1 -- T1T~K g ~  0. (1 .5 )  

Equations (I.I) to (1.5) are a closed set of equations for v, ~, me, and h for the case 
e=0. 

2. Effective Viscosity in the Two-Particle Model. 2.1. General Expression for the Ef- 
fective Viscosity. We determine the effective viscosity of the ferrosuspension for flow into 
a plane aperture in a uniform transverse magnetic field and a pressure gradient p,~ = const. 
The xz axis of a Cartesian coordinate system Oxzx=x~ is taken along the direction of flow, 
while the x= axis is along the external magnetic field. The x~ axis is perpendicular to the 
plane of motion. The velocity and vector magnetization fields are written in the form 

$ / 0)1 2 V = V l ( Z 2 ) ,  V a = V~ = O, 0)~  = O ~ X ~ ) ,  = ~0~ = O,  

m~ : mxoh @ m~• m~ = m=oh + m~,,, 
(2.1) 

From the assumed smallness of the relaxation times, it follows that the ma are of the 
same order and ~2r= << i, ~z~z << i. Then the magnetization equation (1.4) in the linear 
approximation gives 

_ , g ~  --  ~(~,K~ ~ O. ( 2 . 2 )  

The equations of motion (i.i), using (2.1) take the form 

--  2[~I ') (v,, + 2~m a) + ~omLh + Ix (o a --  o,~) = 0, 
- -  2/#t 2) ( v ,  + 2r + ~torn~.zh - -  l, (o~ --  ~ )  = O. 

(2,3) 

With the help of (2.2) we can write 

--P,1 + (% + A~)v,~ = 0, 
A-~ [o~m B' o)~ = ~,  t -v ,  z -}- 2131=)B~] v.2, o)~ = h~ "1 [2pi2)B ', + o a m . ' l  

Bz : 4f~(~ z) ,-+- l*~)mzoh/qh, B., : 4l~ ~) + 9om~ohl~zA, Ba : ra,ohpol~A, 
B'~=a~+lz, B i = B , + I , ,  e ; = B a + l , ,  A, = - -  BzB~ --  Iz (B~+B, - -  2B~)+B~, 

B~ = mzogoh/'r v B~ ~ ra.~oh~o/vz; 

(2.4) 

~ ( " B  ~ - -  131 ~') Arl = [ - -  m ,~= ~(~2)BsB~ - -  ( ~ )  + Iz (B a + B ,  - -  2BaA ) + ( 2 . 5 )  

-~ s~, ~ B~]/AA~. + (~(11) 'b ~i ~)) B~A ' (z) (m 

Equation (2.5) gives the correction An to the usual shear viscosity. The correction is 
determined by the field strength h, the rotational viscosities BI (z), ~z(=), Zt, and the 
relaxation times ~z, T2, T. 

2.2 Effect of Dispersion in the Values of the Magnetic Moments of the Particles on the. 
Effective Viscositx. We consider the viscosity (2.5) in the limit T + =. In this case we 
have A = (TIT=) -z, and the vSscosity can be written out explicitlyin the form 

[~11) 8.~1o~oh,[: 1 ~i~)n~2o~oh"~2 ~_ 

+ (@) + @') ~ [4~,, + ~o'~,o"l [~i '> + ~,o,~.,oq 

A:= [t + zd(4@) + %~tohmzo) + lff(4~(~=)+z29ohm~o)] -1. 

(2,6) 

We assume that the relations of the theory of polar dielectrics and the Langevin theory 
of paramagnetism are valid for both kinds of particles (with concentrations nl and n2 and 
magnetic moments Moz and Mo2): 
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s r  < i - 
@ / A ?  ' 
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Fig. 1 

~oMo ~h ' 3 3 ~ ~  ~~176 ~ " - - T ~ '  L ( ~ ) =  
~ ) = ~ - ~ o ,  ~ -  ~ r  ' ~ =  ~---Y--' = 

= c t h ~ - - T ,  ~ m~~ =n~M~ m~~176 % = ~ @  r 

(2.7) 

When (2.7) is valid, the correction to the viscosity (2.6) takes the form 

+ no3~l~D(z + (~)~L (~)) A, A = 1 ~- ~lo3qO ~ (2 + ~IL (~)) ~- ~1o3~(2 d- ~L (~)) 

~L (~) 
D ( ~ ) =  2+~L(D" 

The rotational velocities of the particles are given by 

(2.8) 

= 9 2 , 3 ~o~ A7 ~ [ ~qD2~lo (2 @ ~L (~)) ~- 3q~]ol,] v,2, ~o2 = A7 ~ [9~q~2~1~ (2 @ 

--/~3~1o [~  (2 -6 ~L (~)) ~ ~ ( 2  @:~L (~))]. 

(2.9) 

When the magnetic moments of the first and second groups of particles are the same, i.e., 
= $i, the viscosity correction (2.8) reduces to that in the single-particle rigid dipole 

model: An = (3/2)~noD(~) for all values of 11. Hence, the rotational diffusion friction II 
does not contribute to the viscosity correction in this case. This follows from the equality 
of the rotational velocities of the particles in this approximation, as seen directly from 

(2.9). 

It is clear from (2.8) that if the parameter ~1, which has dimensions of a viscosity, 
does not depend on ~ and ~I, then in the limit ~:, ~ + ~ we obtain for the saturation vis- 
cosity the value in the rigid dipole model, 3~no/2. It follows from (2.9) that the rota- 
tional motion of the particles is completely frozen. For ~ = ~ = 0 on the other hand, the 
particles rotate freely with the circulation velocity of the fluid solvent m3 =_ (I/2)v,2. 

The dependence of Aq/3~no/2 on ~ calculated from ~2.8) is shown in Fig. I. Curves are 
shown for the values.~ = 0.19, ~i = 0.1235, ~2 = 0.0665, ~i = 0.3g. Curve 1 refers to the 
rigid dipole model for a ferrosuspension with particles of a single kind. Curves 2 and 3 
are constructed for ~I/no = 0 and ll/~o = i, respectively. 

Comparison of curves 1 and 2 shows that dispersion in particle sizes (or particle mag- 
netic moments) leads to a decrease in the viscosity correction An in comparison to the single- 
particle rigid dipole model. This is in qualitative agreement with the data [8], shown as 
points in Fig. i. In [8], the viscosity correction was studied for angular Couette flow for 
a suspension of magnetite in kerosene (stabilized by oleic acid) in a transverse field. The 
hydrodynamic concentration of magnetite was 0.19. According to [9], in a ferrofluid of this 
kind the fraction of particles undergoing Neel relaxation is 0.65. In addition, the magnetic 
moment of the colloidal particles is 3.64 times larger than that for the separate ferromag- 
netic particles [7]. This suggests that in the calculation we assume that the fraction of 
particles with smaller diameter is 0.65 and Mox ~0.3Mo and use the polydispersion of the 

ferrosuspension to interpret the data of [8]. 

The above analysis shows that the experimentally observed decrease of the viscosity of 
the ferrosuspension in comparison to the theoretical value for the single-particle model, 
along with the idea of a partial freezing of the magnetic moments in the particles [8] can 
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be partially explained by dispersion in the sizes of the particles and their magnetic moments. 
Also an increase in the parameter ~ lessens the effect of lowering the viscosity (see curve 
3 of Fig. i), i.e., rotational diffusion friction leads to an additional increase in the flow 
viscosity. 

2.3. Effect of Neel Superparamagnetism of Particles of the First Kind. We assume that 
the magnetic moments of particles of the first kind can diffuse relative to the particles 
with a relaxation time r~ << ~, where ~ is the Brownian relaxation time for particles of 
the second kind. Since we can then put ~ = 0, this means a total freezing of the orienta- 
tional degrees of freedom of the magnetic moments for particles of the first kind. The limit 
�9 : § 0 also implies that we ignore dissipation of energy due to the relaxation of the magne- 
tization m:. Then from (2.6), the assumption (2.7), and ~: = 0, we find for the viscosity 
correction 

3 ~L (~) t ~ 1 (2 .10)  
AT[ =-~-q)2T[o 2 _~_ ~L (~) 6q)lq)2~ 0 ~- 6q)lq o ~ 3T~0(2 -~ ~L (~)) 

The rotational velocities of the particles can be written in the form 

2 9 = ~ = A~ ~ [ 9 ~ . ~ 0  (- + ~L (~)) + 3~0/~] v,2, ~ 5~ ~ [18~T[0  ~ 

+ 3~T[0/1] v,o, hi = - -  18~T_oT[~ (2 + ~L (~)) - -  3~0/~ (2~ ~- ~ L  (~)). 

(2.11) 

Taking the limit ~ § ~ we obtain from (2.10) the limiting value of the saturation vis- 
cosity: 

A ~/T[0 3 6~1~~ ~ ~ll (2 .12)  
y ~26~1~ 0 ~ ~211" 

I t  f o l l o w s  from (2 .12)  t h a t  hn=/no < 3/2 ~ where the  r i g h t - h a n d  s i d e  i s  the  v i s c o s i t y  in  the  
r i g i d  d i p o l e  model .  Th i s  i s  in  q u a l i t a t i v e  agreement  w i t h  the  d a t a  of  [7] where f o r  a s u s -  
p e n s i o n  of m a g n e t i t e  i n  k e r o s e n e  w i t h  c o n c e n t r a t i o n  T = 0 .24 ,  the  v a l u e  Aq~/4o = 0 .06  i s  
found f o r  the  s a t u r a t i o n  v i s c o s i t y .  Th i s  i s  s i g n i f i c a n t l y  s m a l l e r  than  the  t h e o r e t i c a l  v a l u e  
of  3~/2 = 0 .36  f o r  the  r i g i d  d i p o l e  model .  Accord ing  to  e s t i m a t e s  made in  [ 9 ] ,  f o r  t h i s  k ind  
of f e r r o s u s p e n s i o n  the f r a c t i o n  o f  p a r t i c l e s  u n d e r g o i n g  N~el r e l a x a t i o n  i s  0 . 6 5 ,  which g i v e s  
~ = 0 .156 ,  ~2 = 0 .084.  C a l c u l a t i o n  of  t he  v i s c o s i t y  from (2 .12)  f o r  the  minimum v a l u e  ~ = 
0 l e a d s  to  the  v a l u e  5n~/no = 3~2/2 = 0 .126 which q u a l i t a t i v e l y  c o r r e s p o n d s  to  e x p e r i m e n t ,  
bu t  q u a n t i t a t i v e l y  exceeds  the  e x p e r i m e n t a l  v a l u e  o f  0 .06 .  Th i s  d i s c r e p a n c y  can be e x p l a i n e d  
by the  f a c t  t h a t  i n  a r e a l  f e r r o s u s p e n s i o n ,  p a r t i c l e s  of  the  second k ind  have o n l y  p a r t i a l l y  
f r o z e n  m a g n e t i c  moments,  and t h i s  i s  no t  a c c o u n t  f o r  i n  t he  d e r i v a t i o n  o f  (2o12) .  

I t  i s  of  i n t e r e s t  to  c o n s i d e r  the  e f f e c t  of  i n c r e a s i n g  f i e l d  s t r e n g t h  and p a r a m e t e r  l~ 
on t he  r o t a t i o n  o f  p a r t i c l e s .  From (2 .11)  w i t h  ~ = 0 i t  f o l l o w s  t h a t  the  p a r t i c l e s  r o t a t e  
w i t h  t he  c i r c u l a t i o n  v e l o c i t y  o f  the  s o l v e n t  w~ = -- ( : / 2 ) v , 2 ,  and the  v i s c o s i t y  c o r r e c t i o n  
54 = 0 v a n i s h e s .  For  5 + ~ r o t a t i o n  of  p a r t i c l e s  o f  the  second k ind  i s  c o m p l e t e l y  f r o z e n  
(m~ = 0) wh i l e  p a r t i c l e s  o f  the  f i r s t  k ind  r o t a t e  w i t h  v e l o c i t y  

~ = -- 3T~N 0 
6~1~ 0 ~l l  y'2' 

which is less than the circulation velocity of the solvent when l~ = O. The rotational damp- 
ing of particles of the firs~ kind is due to diffusive interaction with particles of the 
second kind which leads to an increase in the flow viscosity. When I~/4o § ~ particles of 
the first kind are also completely frozen and the saturation viscosity (2.12) is a maximum 
and equal to the rigid dipole value of A4=/no = 3@/2. Thus with a decrease in the diffusive 
rotational friction, agreement between theory and experiment is improved. The dependence 
of the viscosity ratio An/A4 = on ~ for l:/no = 1 is close to curve 3 in Fig. i. Hence the 
effect of lowering the viscosity with respect to the rigid dipole model also occurs when 
(2.10) is used. 

3. Basic Equations for the Single-Particle Model of an Anisotropic Ferrocolloid. We 
L 

assume that the difference in the rotational velocities of the particles vanishes, i.e., 
m = ml = ~-Then (1.2) for e = 0 takes the form 
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p ' + P V ' V = 0 ,  p v ' = v . t + ( ~ t o m ' V ) h ,  P / m ' = V ' s + t x ' I + H o  m X h ,  

t ( t • 2 1 5  2m)-~- pT~ = -- T - i Q . v  T + ~ts,.(VV) ' + s . . v  m + ,~ 

+ o),R -~ P~o (~1 - -  OX ~).D~ll + p~t o (~t2 - -  OX ,tt2). D l l ~  0, m = ml+m. , ,  

S = si {- s~_, P = Pi -~- 9~, R = E~liX Vomi - -  E~h X ~tom~, a'p=O(ap)/Ot + V.(voa),  ~)~C~ ~--" moG. 

(3.1) 

The restriction R ~ 0 resulting from the entropy production inequality (3.1), unlike the 
restriction R~ = 0 from (1.3), gives the free energy ~ in the form 

~om~ ~om~ ~ pomfm~, KI, K o > O ,  A o = K ~ - - K 1 K 2 > O ,  (3.2) r)+ 

where terms involving the constant K~ can be interpreted as a dipole-- dipole interaction. 
From (3.2), (3~ and (1.3) we find the equation of state 

~(Po m I m 2 m~ I n  I 
( 3 . 3 )  

-- #p--'---T -- = ~i Ks ' "~  K3 

The dissipative parts of the constitutive equations, in the simplest ease of an incom- 
pressible, isothermal fluid, are given by 

t m = - -  p6 m + a~ (vi,~ + v~,0 + am'b ' ,  b := ~3 (V •  - -  2m), s ~ 0, 

i K~ i K~ K 1 
P~- ~X m~-----~ [m~oh- m~--R~m~ ] + ~ [mloh - -  m i - -  ~ m~].  

(3.4) 

The equations (3.1) to (3.4) along with (i.i) are a closed set of equations for v, ~ 
ml, m2, h. 

4. Effective Viscosity for the Single-Particle Model of an Anisotropic Ferrocolloid. 
Since Eqs. (3.1)-(3.4), unlike the model of [2], have two magnetization relaxation mechan- 
isms, they can describe the effect of partial freezing of the magnetic moments with respect 
to the particles on the effective viscos%ty of the ferrosuspension. Following the analysis 
of Sec. 2 above, we find the value m~ = xah + m~i, where 

/ 2 %c~ ~ K~Ka (Ka - -  Ka+(_i)~- i ) /A6 h 1 = A o TiT2K 8 ~ K2/~:eK1; m,, = mi2 - 4- 

+m2T;  m,, = - -  Bio)3h; B1 = A~-I{[~(Ka--K~)--T1 ( K ~ K 2 ) ]  x2/K~TI +[vK1 (K3 - -  K~) --~2K~ (K 3 - -  K1)]X1/K1K3T~e} ~ 

which gives the viscosity correction 

AI]j ~z~B y~~ 
= 2, B2 ~ K3 [ZG2 0u -- K~) + XGI (K3 -- K~)]/Ao, 

4a a -~- Bfltoh 

T 2 B3 ---- 2K3 (K~ -- gi)/h~, B, ---- KG.~ 

(4.1) 

The viscosity correction Ant depends on the relaxation times ~, ~, ~, the rotational 
viscosity ~3 and the parameters K~, K~, K~. 

The values j = 2 and j = 3 correspond to T § ~ and T § ~, T~ = 0. For j = 4 we take 
in addition Ks § ~. Because mo = xh and K2 = X - KI, we can transform An, from (4.1) to the 
form A~, = a3M/(a~4 + M), M = ~omoh~2(X--Kt)/X, which is the value obtained in [8] under the 
assumption of partial equilibrium, when the magnetization is directed along the total field 
h + A where A is an internal anisotropy field. 

Our analysis shows that in the description of partial freezing of magnetic momenta, it 
is in general not necessary to introduce a hypothetical internal anisotropy field as was 
done in [8]. The assumption of two magnetization relaxation mechanisms is sufficient, and 
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is consistent with the physics of the magnetization in a ferrosuspension. For an applied 
field the magnetization of the ferrosuspension in the direction of the field instantly (for 
~I = O) takes the value mlo because of Neel relaxation. But over a time of order ~2 the 
magnetization of the ferrosuspension increases to the value m=o because of Brownian relaxa- 
tion. In the equations given here, terms involving the coefficient K3 in the equation of 
state (3.3) correspond to the effect of internal fields on the magnetization m= and m2 due 
to the existence of magnetizations m~ and m2, respectively. This recalls the situation in 
antiferromagnets where there are also two effective fields resulting from the magnetizations 
m~ and ms of the sublattice~. 
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EVOLUTION EQUATION FOR THE VORTEX DISTRIBUTION FUNCTION 

IN THE PLANAR CASE 

Yu. N. Grigor'ev UDC 532.517 

In [1-5] a system of linear vortex lines in an ideal fluid is used as a model of two- 
dimensional turbulence. There are examples which support the plausibility of this model; 
in particular, results have been obtained with the model which are interesting from the point 
of view of the statistical theory of turbulence [i], dynamical meteorology [4], and numerical 
modeling of the streamlining of bodies at large Reynolds numbers [5]. 

In the above papers the.system of vortices was studied in a state of statistical equili- 
brium. But in real hydrodynamic turbulence, nonequilibrium states of the fluid are import- 
ant as well, where the evolution is Characterized by statistical irreversibility. It is 
therefore of interest to consider nonequilibrium evolution in model systems by the methods 
of kinetic theory [7, 8]. Some asymptotic solutions of the BBGKY hierarchy for a system of 
linear vortices have been considered in [I]. 

In the present paper, the nonequilibrium statistical properties of this model are stud- 
ied using the Liouville equation for an ensemble of vortex lines. Analysis and summation 
of the formal time-dependent perturbation series are carried out with the help of the dia- 

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 
3, pp. 27-38, May-June, 1983. Original article submitted May 6, 1982. 

304 0021-8944/83/2403-0304507.50 �9 1984 Plenum Publishing Corporation 


